Emerton’s Jacquet Functors for Non-Borel Parabolic Subgroups

نویسندگان

  • Richard Hill
  • David Loeffler
  • Peter Schneider
چکیده

This paper studies Emerton’s Jacquet module functor for locally analytic representations of p-adic reductive groups, introduced in [Eme06a]. When P is a parabolic subgroup whose Levi factor M is not commutative, we show that passing to an isotypical subspace for the derived subgroup ofM gives rise to essentially admissible locally analytic representations of the torus Z(M), which have a natural interpretation in terms of rigid geometry. We use this to extend the construction in of eigenvarieties in [Eme06b] by constructing eigenvarieties interpolating automorphic representations whose local components at p are not necessarily principal series. 2010 Mathematics Subject Classification: 11F75, 22E50, 11F70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Jacquet Functors and Ordinary Parts

In this note we relate Emerton’s Jacquet functor JP to his ordinary parts functor OrdP , by computing the χ-eigenspaces Ord χ P for central characters χ. This fills a small gap in the literature. One consequence is a weak adjunction property for unitary characters χ appearing in JP , with potential applications to local-global compatibility in the p-adic Langlands program in the ordinary case.

متن کامل

Representations of Reductive Groups

This course consists of two parts. In the first we will study representations of reductive groups over local non-archimedian fields [ such as Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of J.Bernstein. Moreover I’ll often copy big chanks from these notes. In the second the representations of reductive groups over 2-dimensional local fields [ such as Qp((s))]. In th...

متن کامل

On Bernstein’s Presentation of Iwahori-hecke Algebras and Representations of Split Reductive Groups over Non-archimedean Local Fields

This article gives conceptual statements and proofs relating parabolic induction and Jacquet functors on split reductive groups over a nonArchimedean local field to the associated Iwahori-Hecke algebra as tensoring from and restricting to parabolic subalgebras. The main tool is Bernstein’s presentation of the Iwahori-Hecke algebra.

متن کامل

Representations of Parabolic and Borel Subgroups

We demonstrate a relationships between the representation theory of Borel subgroups and parabolic subgroups of general linear groups. In particular, we show that the representations of Borel subgroups could be computed from representations of certain maximal parabolic subgroups.

متن کامل

Holomorphic Continuation of Generalized Jacquet Integrals for Degenerate Principal Series

This paper introduces a class of parabolic subgroups of real reductive groups (called “very nice”). For these parabolic subgroups we study the generalized Whittaker vectors for their degenerate principal series. It is shown that there is a holomorphic continuation of the Jacquet integrals associated with generic characters of their unipotent radicals. Also, in this context an analogue of the “m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010